# Documentation : Scilab is Not Naive Commit Details

Date: 2010-12-19 22:04:29 (8 years 1 month ago) Michael Baudin 32 31 Added variants.

## File differences

en_US/scripts/cdiv_smithStewart.sci
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
 // Copyright (C) 2010 - Michael Baudin␊ ␊ ␊ // A Scilab port of Stewart's algorithm.␊ // References␊ //␊ // "A Note on Complex Division"␊ // G. W. Stewart, University of Maryland␊ // ACM Transactions on Mathematical Software, Vol. 11␊ // No 3, September 1985, Pages 238-241␊ // ␊ // TODO : fix this using :␊ // G. W. Stewart␊ // Corrigendum: {A} Note on Complex Division''",␊ // TOMS,␊ // volume 12␊ // number 3␊ // pages = 285--285␊ // month = September, 1986␊ ␊ function r = cdiv_smithStewart ( x,y )␊ error("Does not work")␊ c = real(x)␊ d = imag(x)␊ e = real(y)␊ f = imag(y)␊ flip = %f␊ if ( abs(f) >= abs(e) ) then␊ [f,e]=switch(e,f)␊ [c,d]=switch(d,c)␊ flip=%t␊ end␊ s=1/e␊ t=1/(e+f*(f*s))␊ if ( abs(f) >= abs(s) ) then␊ [f,s]=switch(s,f)␊ end␊ if ( abs(d) >= abs(s) ) then␊ a=t*(c+s*(d*f))␊ elseif ( abs(d) >= abs(f) ) then␊ a=t*(c+d*(s*f))␊ else␊ a=t*(c+f*(s*d))␊ end␊ if ( abs(c) >= abs(s) ) then␊ b=t*(d+s*(c*f))␊ elseif ( abs(c) >= abs(f) ) then␊ b=t*(d+c*(s*f))␊ else␊ b=t*(d+f*(s*c))␊ end␊ if ( flip ) then␊ b=-b␊ end␊ // Avoid using x + %i * y, which may create␊ // %inf+%i*%inf, which actually multiplies 0 and %inf,␊ // generating an unwanted %nan.␊ r = complex(a,b)␊ endfunction␊ ␊ function [c,d]=switch(a,b)␊ c=a␊ d=b␊ endfunction␊ ␊ function r = cdiv_smithStewart_Other ( x,y )␊ c = real(x)␊ d = imag(x)␊ e = real(y)␊ f = imag(y)␊ flip = %f␊ if ( abs(f) >= abs(e) ) then␊ // Switch e and f␊ tmp=e␊ e=f␊ f=tmp␊ // Switch c and d␊ tmp=c␊ c=d␊ d=tmp␊ flip=%t␊ end␊ s=1/e␊ t=1/(e+f*(f*s))␊ if ( abs(f) >= abs(s) ) then␊ // Switch f and s␊ tmp=f␊ f=s␊ s=tmp␊ end␊ if ( abs(d) >= abs(s) ) then␊ a=t*(c+s*(d*f))␊ elseif ( abs(d) >= abs(f) ) then␊ a=t*(c+d*(s*f))␊ else␊ a=t*(c+f*(s*d))␊ end␊ if ( abs(c) >= abs(s) ) then␊ b=t*(d+s*(c*f))␊ elseif ( abs(c) >= abs(f) ) then␊ b=t*(d+c*(s*f))␊ else␊ b=t*(d+f*(s*c))␊ end␊ if ( flip ) then␊ b=-b␊ end␊ // Avoid using x + %i * y, which may create␊ // %inf+%i*%inf, which actually multiplies 0 and %inf,␊ // generating an unwanted %nan.␊ r = complex(a,b)␊ endfunction␊ ␊
en_US/scripts/cdiv.tst
 18 18 19 19 20 20 21 22 23 24 25 26 27 28 29 30 31 32 21 33 22 34 23 35 ... ... 33 45 34 46 35 47 36 37 38 48 39 40 41 49 42 43 50 44 51 45 52 ... ... 47 54 48 55 49 56 50 57 51 58 52 59 53 60 ... ... 67 74 68 75 69 76 77 78 70 79 71 80 72 81 ... ... 87 96 88 97 89 98 90 91 92 93 94 95 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 96 114 97 115 116 98 117 99 100 101 102 103 118 119 120 121 122 123 124 125 126 127 128 104 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 105 156 157 106 158 107 159 108 160
 // cdiv_smith.sci : original Smith's method␊ exec("cdiv_smith.sci");␊ ␊ // cdiv_smithStewart.sci : original Smith's method, improved by Steward␊ exec("cdiv_smithStewart.sci");␊ ␊ // A Scilab port of the ANSI/ISO C algorithm␊ exec("cdiv_ansiisoC.sci");␊ ␊ // A Scilab port of the Li et al. improved Smith␊ exec("cdiv_smithLi.sci");␊ ␊ // A division based on polar form␊ exec("cdiv_polar.sci");␊ ␊ // An improved Smith method, with ideas from Stewart (prodminmax)␊ exec("cdiv_smith2.sci");␊ ␊ exec("cdiv_smith6.sci");␊ end␊ ␊ // A Scilab port of the ANSI/ISO C algorithm␊ exec("cdiv_ansiisoC.sci");␊ ␊ // A Scilab port of the Li et al. improved Smith␊ exec("cdiv_smithLi.sci");␊ ␊ ␊ exec("assert_computedigits.sci");␊ exec("assert_datasetread.sci");␊ ␊ ␊ ieee(2);␊ ␊ function msg = fmtdig ( x , y , expected , divfunc , headermsg , footermsg )␊ function [msg,digits] = fmtdig ( x , y , expected , divfunc , headermsg , footermsg )␊ // Performs the complex division x/y, compare to expected, and produve a message ␊ // containing the number of digits in the real and imaginary parts.␊ r = divfunc ( a + %i * b , c + %i * d );␊ format("e",10);␊ path=pwd();␊ basis = 2;␊ msg=[];␊ dg=[];␊ dataset = fullfile(path,"cdiv.dataset.csv");␊ table = assert_datasetread ( dataset , "#" , "," , %t );␊ ntests = size(table,"r");␊ expectedR = e+%i*f;␊ x = a + %i * b;␊ y = c + %i * d;␊ msg = msprintf("Test #%3d/%d, %70s, ", k,ntests,sci2exp([a b c d e f]) );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_scilab , "Sc" , ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_naive , "Na" , ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smith , "Sm" , ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smith2 , "S2" , ", " );␊ //msg = msg + fmtdig ( x , y , expectedR , cdiv_smith3 , "S3" , ", " );␊ msg(1) = msprintf("Test #%3d/%d, %70s, ", k,ntests,sci2exp([a b c d e f]) );␊ dg(k,1)=0;␊ j=2;␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_scilab , "Sc" , ", " );␊ j=j+1;␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_naive , "Na" , ", " );␊ j=j+1;␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith , "Sm" , ", " );␊ j=j+1;␊ // [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smithStewart , "St" , ", " );␊ // j=j+1;␊ //[msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith2 , "S2" , ", " );␊ //j=j+1;␊ //[msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith3 , "S3" , ", " );␊ //j=j+1;␊ if ( haveimproved ) then␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smith4 , "S4" , ", " );␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith4 , "S4" , ", " );␊ j=j+1;␊ end␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_ansiisoC , "AC", ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smithLi , "Li" , ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smith5 , "S5" , ", " );␊ msg = msg + fmtdig ( x , y , expectedR , cdiv_smith6 , "S6" , "" );␊ mprintf("%s\n",msg);␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_ansiisoC , "AC", ", " );␊ j=j+1;␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smithLi , "Li" , ", " );␊ j=j+1;␊ [msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith5 , "S5" , "" );␊ j=j+1;␊ //[msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_smith6 , "S6" , ", " );␊ //j=j+1;␊ //[msg(j),dg(k,j)] = fmtdig ( x , y , expectedR , cdiv_polar , "PO" , "" );␊ //j=j+1;␊ mprintf("%s\n",strcat(msg,""));␊ end␊ mprintf("Average:\n");␊ j=2;␊ mprintf("Sc=%d\n",mean(dg(:,j)));␊ j=j+1;␊ mprintf("Na=%d\n",mean(dg(:,j)));␊ j=j+1;␊ mprintf("Sm=%d\n",mean(dg(:,j)));␊ j=j+1;␊ //mprintf("ST=%d\n",mean(dg(:,j)));␊ //j=j+1;␊ //mprintf("S2=%d\n",mean(dg(:,j)));␊ //j=j+1;␊ //mprintf("S3=%d\n",mean(dg(:,j)));␊ //j=j+1;␊ mprintf("S4=%d\n",mean(dg(:,j)));␊ j=j+1;␊ mprintf("AC=%d\n",mean(dg(:,j)));␊ j=j+1;␊ mprintf("Li=%d\n",mean(dg(:,j)));␊ j=j+1;␊ mprintf("S5=%d\n",mean(dg(:,j)));␊ j=j+1;␊ //mprintf("S6=%d\n",mean(dg(:,j)));␊ //j=j+1;␊ //mprintf("PO=%d\n",mean(dg(:,j)));␊ //j=j+1;␊ ␊ ␊ // Discovered Issues:␊ // (0+%i*1 )/(0+%i*0) Scilab = Nan + Nan i Octave = NaN + Inf i Matlab = NaN + Inf i␊ // (1+%i*-1)/(0+%i*0) Scilab = Nan + Nan i Octave = Inf - Inf i Matlab = Inf - Inf i␊
en_US/scripts/cdiv_polar.sci
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 // Copyright (C) 2010 - Michael Baudin␊ ␊ ␊ // A complex division based on polar form.␊ // Can be very inaccurate:␊ // x=-1-%i␊ // y=-1+%i␊ // cdiv_polar(x,y) : - 1.837D-16 + i (Exact = %i)␊ // ␊ //␊ function r = cdiv_polar ( x , y )␊ // Put x in to polar form x=xr*exp(xa*%i)␊ xr = abs(x)␊ xa = atan(imag(x),real(x))␊ // Put y in to polar form y=yr*exp(ya*%i)␊ yr = abs(y)␊ ya = atan(imag(y),real(y))␊ // Divide : (x/y)␊ r = (xr/yr)*exp((xa-ya)*%i)␊ endfunction␊ ␊
en_US/scilabisnotnaive.bib
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
 % Copyright (C) 2008-2010 - Consortium Scilab - Digiteo - Michael Baudin␍␊ %␍␊ % This file must be used under the terms of the ␍␊ % Creative Commons Attribution-ShareAlike 3.0 Unported License :␍␊ % http://creativecommons.org/licenses/by-sa/3.0/␍␊ ␍␊ ␍␊ @book{AbramowitzStegun1972,␍␊ author = {Abramowitz, M. and Stegun, I. A.},␍␊ title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables},␍␊ year = {1972},␍␊ publisher= {}}␍␊ ␍␊ @UNPUBLISHED{wikipediaquadratic,␍␊ title = {Quadratic Equation},␍␊ note = {\url{http://en.wikipedia.org/wiki/Quadratic_equation}}␍␊ }␍␊ ␍␊ ␍␊ @UNPUBLISHED{wikipedialossofsign,␍␊ title = {Loss of significance},␍␊ note = {\url{http://en.wikipedia.org/wiki/Loss_of_significance}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{mathworldquadratic,␍␊ title = {Quadratic Equation},␍␊ note = {\url{http://mathworld.wolfram.com/QuadraticEquation.html}}␍␊ }␍␊ ␍␊ @book{NumericalRecipes,␍␊ author = {W. H. Press and Saul A. Teukolsky and William T. Vetterling and Brian P. Flannery},␍␊ title = {Numerical Recipes in C, Second Edition},␍␊ year = {1992},␍␊ publisher= {}}␍␊ ␍␊ @book{WhatEveryComputerScientist,␍␊ author = {David Goldberg},␍␊ title = {What Every Computer Scientist Should Know About Floating-Point Arithmetic},␍␊ month={March},␍␊ year = {1991},␍␊ publisher= {Association for Computing Machinery, Inc.},␍␊ note = {\url{http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf}},␍␊ }␍␊ ␍␊ @article{Nievergelt2003,␍␊ jstor_articletype = {primary_article},␍␊ title = {How (Not) to Solve Quadratic Equations},␍␊ author = {Nievergelt, Yves},␍␊ journal = {The College Mathematics Journal},␍␊ jstor_issuetitle = {},␍␊ volume = {34},␍␊ number = {2},␍␊ jstor_formatteddate = {Mar., 2003},␍␊ pages = {90--104},␍␊ url = {http://www.jstor.org/stable/3595780},␍␊ ISSN = {07468342},␍␊ abstract = {},␍␊ publisher = {Mathematical Association of America},␍␊ language = {},␍␊ year = {2003},␍␊ }␍␊ ␍␊ ␍␊ @article{Kahan2004,␍␊ title = {On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic},␍␊ author = {W. Kahan},␍␊ note = {\url{http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf}},␍␊ year = {2004},␍␊ }␍␊ ␍␊ @article{Smith1962,␍␊ author = {Smith,, Robert L.},␍␊ title = {Algorithm 116: Complex division},␍␊ journal = {Commun. ACM},␍␊ volume = {5},␍␊ number = {8},␍␊ year = {1962},␍␊ issn = {0001-0782},␍␊ pages = {435},␍␊ doi = {http://doi.acm.org/10.1145/368637.368661},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ ␍␊ @article{Jenkins1975,␍␊ author = {Jenkins,, M. A.},␍␊ title = {Algorithm 493: Zeros of a Real Polynomial [C2]},␍␊ journal = {ACM Trans. Math. Softw.},␍␊ volume = {1},␍␊ number = {2},␍␊ year = {1975},␍␊ issn = {0098-3500},␍␊ pages = {178--189},␍␊ doi = {http://doi.acm.org/10.1145/355637.355643},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ ␍␊ @article{214414,␍␊ author = {Stewart,, G. W.},␍␊ title = {A note on complex division},␍␊ journal = {ACM Trans. Math. Softw.},␍␊ volume = {11},␍␊ number = {3},␍␊ year = {1985},␍␊ issn = {0098-3500},␍␊ pages = {238--241},␍␊ doi = {http://doi.acm.org/10.1145/214408.214414},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ @article{567808,␍␊ author = {Li,, Xiaoye S. and Demmel,, James W. and Bailey,, David H. and Henry,, Greg and Hida,, Yozo and Iskandar,, Jimmy and Kahan,, William and Kang,, Suh Y. and Kapur,, Anil and Martin,, Michael C. and Thompson,, Brandon J. and Tung,, Teresa and Yoo,, Daniel J.},␍␊ title = {Design, implementation and testing of extended and mixed precision BLAS},␍␊ journal = {ACM Trans. Math. Softw.},␍␊ volume = {28},␍␊ number = {2},␍␊ year = {2002},␍␊ issn = {0098-3500},␍␊ pages = {152--205},␍␊ doi = {http://doi.acm.org/10.1145/567806.567808},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ @article{KAHAN1987,␍␊ author = {KAHAN, W.},␍␊ title = {Branch cuts for complex elementary functions, or much ado about nothing's sign bit.},␍␊ year = {1987},␍␊ pages = {165--211},␍␊ publisher = {In The State of the Art m Numerzcal Analysts. Proceedings of the Joint IMA/SIAM Conference, A. Iserles and M J. D Powell, Eds. Clarendon Press, Oxford, England},␍␊ }␍␊ @article{1039814,␍␊ author = {Priest,, Douglas M.},␍␊ title = {Efficient scaling for complex division},␍␊ journal = {ACM Trans. Math. Softw.},␍␊ volume = {30},␍␊ number = {4},␍␊ year = {2004},␍␊ issn = {0098-3500},␍␊ pages = {389--401},␍␊ doi = {http://doi.acm.org/10.1145/1039813.1039814},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ @UNPUBLISHED{schimdtnd,␍␊ title = {Numerical Derivatives},␍␊ note = {\url{http://fermi.la.asu.edu/PHY531/intro/node1.html}},␍␊ author = {K.E. Schmidt}␍␊ }␍␊ @book{dixmier,␍␊ author = {J. Dixmier, P. Dugac},␍␊ year = {1969},␍␊ publisher= {Gauthier-Villars}}␍␊ ␍␊ @article{Forsythe1966,␍␊ author = {George E. Forsythe},␍␊ title = {How Do You Solve A Quadratic Equation ?},␍␊ year = {1966},␍␊ publisher = {Technical Report No. CS40},␍␊ note = {\url{ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/66/40/CS-TR-66-40.pdf}},␍␊ }␍␊ ␍␊ ␍␊ @ARTICLE{1667289,␍␊ title={Underflow and the Denormalized Numbers},␍␊ author={Coonen, J.T.},␍␊ journal={Computer},␍␊ year={1981},␍␊ month={March },␍␊ volume={14},␍␊ number={3},␍␊ pages={75-87},␍␊ doi={10.1109/C-M.1981.220382},␍␊ ISSN={0018-9162}, }␍␊ ␍␊ @book{artcomputerKnuthVol2,␍␊ author = {D. E. Knuth},␍␊ title = {The Art of Computer Programming, Volume 2, Seminumerical Algorithms},␍␊ year = {1998},␍␊ publisher= {Third Edition, Addison Wesley, Reading, MA}}␍␊ ␍␊ @Article{Wynn:1962:AAP,␍␊ author = "P. Wynn",␍␊ title = "An Arsenal of {ALGOL} Procedures for Complex Arithmetic",␍␊ journal = "BIT Numerical Mathematics",␍␊ volume = "2",␍␊ number = "4",␍␊ pages = "232--255",␍␊ month = dec,␍␊ year = "1962",␍␊ CODEN = "BITTEL, NBITAB",␍␊ DOI = "http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/BF01940171",␍␊ ISSN = "0006-3835 (print), 1572-9125 (electronic)",␍␊ bibdate = "Wed Jan 4 18:52:07 MST 2006",␍␊ bibsource = "ftp://ftp.math.utah.edu/pub/tex/bib/bit.bib;␍␊ http://springerlink.metapress.com/openurl.asp?genre=issue&issn=0006-3835&volume=2&issue=4",␍␊ URL = "http://www.springerlink.com/openurl.asp?genre=article&issn=0006-3835&volume=2&issue=4&spage=232",␍␊ acknowledgement = ack-nhfb,␍␊ }␍␊ @article{DBLP:journals/cacm/Friedland67,␍␊ author = {Paul Friedland},␍␊ title = {Algorithm 312: Absolute value and square root of a complex␍␊ number},␍␊ journal = {Commun. ACM},␍␊ volume = {10},␍␊ number = {10},␍␊ year = {1967},␍␊ pages = {665},␍␊ ee = {http://doi.acm.org/10.1145/363717.363780},␍␊ bibsource = {DBLP, http://dblp.uni-trier.de}␍␊ }␍␊ ␍␊ @article{journals/ibmrd/MolerM83,␍␊ title = {Replacing Square Roots by Pythagorean Sums.},␍␊ author = {Cleve B. Moler and Donald Morrison},␍␊ journal = {IBM Journal of Research and Development},␍␊ number = {6},␍␊ pages = {577-581},␍␊ url = {http://dblp.uni-trier.de/db/journals/ibmrd/ibmrd27.html#MolerM83},␍␊ volume = {27},␍␊ year = {1983},␍␊ description = {dblp},␍␊ date = {2002-01-03},␍␊ keywords = {dblp }␍␊ } ␍␊ ␍␊ @techreport{900236,␍␊ author = {Lawson,, C. L. and Hanson,, R. J. and Kincaid,, D. R. and Krogh,, F. T.},␍␊ title = {Basic Linear Algebra Subprograms for FORTRAN Usage},␍␊ year = {1977},␍␊ source = {http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%3Autexas_cs%3AUTEXAS_CS%2F%2FCS-TR-77-72},␍␊ publisher = {University of Texas at Austin},␍␊ address = {Austin, TX, USA},␍␊ }␍␊ ␍␊ @article{355771,␍␊ author = {Blue,, James L.},␍␊ title = {A Portable Fortran Program to Find the Euclidean Norm of a Vector},␍␊ journal = {ACM Trans. Math. Softw.},␍␊ volume = {4},␍␊ number = {1},␍␊ year = {1978},␍␊ issn = {0098-3500},␍␊ pages = {15--23},␍␊ doi = {http://doi.acm.org/10.1145/355769.355771},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ @InCollection{Cody:1971:SEF,␍␊ author = "W. J. Cody",␍␊ title = "Software for the Elementary Functions",␍␊ crossref = "Rice:1971:MS",␍␊ pages = "171--186",␍␊ year = "1971",␍␊ bibdate = "Thu Sep 15 18:56:47 1994",␍␊ bibsource = "garbo.uwasa.fi:/pc/doc-soft/fpbiblio.txt",␍␊ acknowledgement = ack-nj,␍␊ }␍␊ ␍␊ @techreport{ieee754-1985,␍␊ ␉author = {Stevenson, David },␍␊ ␉booktitle = {ANSI/IEEE Std 754-1985},␍␊ ␉citeulike-article-id = {1677576},␍␊ ␉journal = {ANSI/IEEE Std 754-1985},␍␊ ␉keywords = {floating-point, para08},␍␊ ␉month = {August},␍␊ ␉posted-at = {2008-04-21 12:47:40},␍␊ ␉priority = {1},␍␊ ␉title = {IEEE standard for binary floating-point arithmetic},␍␊ ␉url = {http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=30711},␍␊ ␉year = {1985}␍␊ }␍␊ ␍␊ @Book{P754:2008:ISF,␍␊ author = "{IEEE Task P754}",␍␊ title = "{IEEE 754-2008, Standard for Floating-Point␍␊ Arithmetic}",␍␊ publisher = pub-IEEE-STD,␍␊ address = pub-IEEE-STD:adr,␍␊ pages = "58",␍␊ day = "29",␍␊ month = aug,␍␊ year = "2008",␍␊ DOI = "http://doi.ieeecomputersociety.org/10.1109/IEEESTD.2008.4610935",␍␊ ISBN = "0-7381-5753-8 (paper), 0-7381-5752-X (electronic)",␍␊ ISBN-13 = "978-0-7381-5753-5 (paper), 978-0-7381-5752-8␍␊ (electronic)",␍␊ bibdate = "Thu Sep 25 09:50:30 2008",␍␊ URL = "http://ieeexplore.ieee.org/servlet/opac?punumber=4610933;␍␊ http://en.wikipedia.org/wiki/IEEE_754-2008",␍␊ abstract = "This standard specifies interchange and arithmetic␍␊ formats and methods for binary and decimal␍␊ floating-point arithmetic in computer programming␍␊ environments. This standard specifies exception␍␊ conditions and their default handling. An␍␊ implementation of a floating-point system conforming to␍␊ this standard may be realized entirely in software,␍␊ entirely in hardware, or in any combination of software␍␊ and hardware. For operations specified in the normative␍␊ part of this standard, numerical results and exceptions␍␊ are uniquely determined by the values of the input␍␊ data, sequence of operations, and destination formats,␍␊ all under user control.",␍␊ acknowledgement = ack-nhfb,␍␊ }␍␊ ␍␊ @article{matlab-hypot,␍␊ note={\url{http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/hypot.html&http://www.google.fr/search?q=hypot&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:fr:official&client=firefox-a}},␍␊ title={Matlab - hypot : square root of sum of squares},␍␊ }␍␊ ␍␊ @article{fdlibm,␍␊ title = {A Freely Distributable C Math Library},␍␊ author = {Sun Microsystems, Inc.},␍␊ year = {1993},␍␊ note = {\url{http://www.netlib.org/fdlibm}},␍␊ }␍␊ ␍␊ @book{261217,␍␊ author = {Muller,, Jean-Michel},␍␊ title = {Elementary functions: algorithms and implementation},␍␊ year = {1997},␍␊ isbn = {0-8176-3990-X},␍␊ publisher = {Birkhauser Boston, Inc.},␍␊ address = {Secaucus, NJ, USA},␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWMapleSoft,␍␊ title = {MapleSoft},␍␊ author = {Maple},␍␊ note = {\url{http://www.maplesoft.com}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWMathematica,␍␊ title = {Mathematica},␍␊ author = {Wolfram Research},␍␊ note = {\url{http://www.wolfram.com/products/mathematica}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWWolframAlpha,␍␊ title = {Wolfram Alpha},␍␊ author = {Wolfram Research},␍␊ note = {\url{http://www.wolframalpha.com}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWMaxima,␍␊ title = {Maxima},␍␊ note = {\url{http://maxima.sourceforge.net/}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWScilab,␍␊ title = {Scilab},␍␊ author = {The Scilab Consortium},␍␊ note = {\url{http://www.scilab.org}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWMatlab,␍␊ title = {Matlab},␍␊ author = {The MathWorks},␍␊ note = {\url{http://www.mathworks.fr}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{WWWOctave,␍␊ title = {Octave},␍␊ note = {\url{http://www.gnu.org/software/octave}}␍␊ }␍␊ ␍␊ @Book{Higham:2002:ASN,␍␊ author = "Nicholas J. Higham",␍␊ title = "Accuracy and Stability of Numerical Algorithms",␍␊ publisher = "Society for Industrial and Applied Mathematics",␍␊ address = "Philadelphia, PA, USA",␍␊ edition = "Second",␍␊ year = "2002",␍␊ pages = "xxx+680",␍␊ ISBN = "0-89871-521-0"␍␊ }␍␊ @article{JenkinsTraub1970,␍␊ jstor_articletype = {primary_article},␍␊ title = {A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration},␍␊ author = {Jenkins, M. A. and Traub, J. F.},␍␊ journal = {SIAM Journal on Numerical Analysis},␍␊ jstor_issuetitle = {},␍␊ volume = {7},␍␊ number = {4},␍␊ jstor_formatteddate = {Dec., 1970},␍␊ pages = {545--566},␍␊ url = {http://www.jstor.org/stable/2949376},␍␊ ISSN = {00361429},␍␊ abstract = {},␍␊ language = {},␍␊ year = {1970},␍␊ publisher = {Society for Industrial and Applied Mathematics}, ␍␊ copyright = {Copyright © 1970 Society for Industrial and Applied Mathematics},␍␊ }␍␊ ␍␊ @book{KelleyNewtonMethod,␍␊ author = {Kelley, C. T.},␍␊ title = {Solving nonlinear equations with Newton's method},␍␊ year = {2003},␍␊ publisher= {SIAM}}␍␊ ␍␊ @article{DumontetVignes1977,␍␊ title = {D\'etermination du pas optimal dans le calcul des d\'eriv\'ees sur ordinateur},␍␊ author = {Dumontet, J. and Vignes, J.},␍␊ journal = {R.A.I.R.O Analyse num\'erique},␍␊ volume = {11},␍␊ number = {1},␍␊ pages = {13--25},␍␊ url = {http://www.numdam.org/item?id=M2AN_1977__11_1_13_0},␍␊ year = {1977},␍␊ }␍␊ ␍␊ @article{1979SteplemanWinarsky,␍␊ jstor_articletype = {primary_article},␍␊ title = {Adaptive Numerical Differentiation},␍␊ author = {Stepleman, R. S. and Winarsky, N. D.},␍␊ journal = {Mathematics of Computation},␍␊ jstor_issuetitle = {},␍␊ volume = {33},␍␊ number = {148},␍␊ jstor_formatteddate = {Oct., 1979},␍␊ pages = {1257--1264},␍␊ url = {http://www.jstor.org/stable/2006459},␍␊ ISSN = {00255718},␍␊ abstract = {It is well known that the calculation of an accurate approximate derivative $f'(x)$ of a nontabular function $f(x)$ on a finite-precision computer by the formula $d(h) = (f(x + h) - f(x - h))/2h$ is a delicate task. If $h$ is too large, truncation errors cause poor answers, while if $h$ is too small, cancellation and other "rounding" errors cause poor answers. We will show that by using simple results on the nature of the asymptotic convergence of $d(h)$ to $f'$, a reliable numerical method can be obtained which can yield efficiently the theoretical maximum number of accurate digits for the given machine precision.},␍␊ language = {},␍␊ year = {1979},␍␊ publisher = {American Mathematical Society}, ␍␊ copyright = {Copyright © 1979 American Mathematical Society},␍␊ }␍␊ ␍␊ @book{Gill81MurrayWright,␍␊ ␉address = {London},␍␊ ␉author = {Gill, P. E. and Murray, W. and Wright, M. H. },␍␊ ␉citeulike-article-id = {1055426},␍␊ ␉keywords = {bibtex-import},␍␊ ␉posted-at = {2007-01-20 09:02:15},␍␊ ␉priority = {2},␍␊ ␉publisher = {Academic Press},␍␊ ␉title = {Practical optimization},␍␊ ␉year = {1981}␍␊ }␍␊ ␍␊ @Book{MullerEtAl2010,␍␊ title = {Handbook of Floating-Point Arithmetic},␍␊ author = {Muller, Jean-Michel and Brisebarre, Nicolas and de␍␊ Dinechin, Florent and Jeannerod, Claude-Pierre and␍␊ Lef{\e}vre, Vincent and Melquiond, Guillaume and Revol,␍␊ Nathalie and Stehl{\'e}, Damien and Torres, Serge},␍␊ publisher = {{B}irkh\"auser {B}oston },␍␊ pages = {572 },␍␊ note = {{ACM} {G}.1.0; {G}.1.2; {G}.4; {B}.2.0; {B}.2.4; {F}.2.1.,␍␊ ISBN 978-0-8176-4704-9},␍␊ year = {2010},␍␊ }␍␊ ␍␊ @article{Monniaux2008,␍␊ author = {Monniaux, David},␍␊ title = {The pitfalls of verifying floating-point computations},␍␊ journal = {ACM Trans. Program. Lang. Syst.},␍␊ volume = {30},␍␊ number = {3},␍␊ year = {2008},␍␊ issn = {0164-0925},␍␊ pages = {1--41},␍␊ doi = {http://doi.acm.org/10.1145/1353445.1353446},␍␊ publisher = {ACM},␍␊ address = {New York, NY, USA},␍␊ }␍␊ ␍␊ @techreport{CordenKreitzerIntel2009,␍␊ title = {Consistency of Floating-Point Results using the Intel Compiler or Why doesn't my application always give the same answer?},␍␊ author = {Corden, Martyn J. and Kreitzer, David},␍␊ institution = {Intel Corporation, Software Solutions Group}, ␍␊ year = {2009}␍␊ }␍␊ ␍␊ @techreport{GCCManual2008,␍␊ title = {The GNU Compiler Collection},␍␊ author = {Free Software Foundation},␍␊ year = {2008}␍␊ }␍␊ ␍␊ @UNPUBLISHED{Intel64IA32Architecture,␍␊ title = {Intel 64 and IA-32 Architectures Software Developer's Manual. Volume 1: Basic Architecture},␍␊ author = {Intel Corporation}, ␍␊ year = {2009},␍␊ note = {\url{http://www.intel.com/products/processor/manuals}}␍␊ }␍␊ ␍␊ @UNPUBLISHED{MPFRWeb,␍␊ author = {MPFR},␍␊ title = {The MPFR Library},␍␊ note = {\url{http://www.mpfr.org}}␍␊ }␍␊ ␍␊ @Article{Fousse:2007:MMP,␍␊ author = "Laurent Fousse and Guillaume Hanrot and Vincent Lef\evre and Patrick ␍␊ P\'elissier and Paul Zimmermann",␍␊ title = "{MPFR}: A Multiple-Precision Binary Floating-Point Library with Correct Rounding",␍␊ journal = "{ACM} Transactions on Mathematical Software",␍␊ volume = "33",␍␊ number = "2",␍␊ month = jun,␍␊ year = "2007",␍␊ pages = "13:1--13:15",␍␊ URL = "http://doi.acm.org/10.1145/1236463.1236468",␍␊ abstract = "This paper presents a multiple-precision binary floating-point library,␍␊ written in the ISO C language, and based on the GNU MP library. Its ␍␊ particularity is to extend to arbitrary-precision ideas from the IEEE 754 ␍␊ standard, by providing \emph{correct rounding} and \emph{exceptions}.␍␊ We demonstrate how these strong semantics are achieved --- with no ␍␊ significant slowdown with respect to other arbitrary-precision tools␍␊ --- and discuss a few applications where such a library can be useful.",␍␊ }␍␊ ␍␊ @UNPUBLISHED{GMPWeb,␍␊ author = {GMP},␍␊ title = {GNU Multiple Precision Arithmetic Library},␍␊ note = {\url{http://gmplib.org}}␍␊ }␍␊ ␍␊ ␍␊ @book{GolubVanLoad1996,␍␊ ␉address = {Baltimore, MD, USA},␍␊ ␉author = {Golub, Gene H. and Van Loan, Charles F. },␍␊ ␉isbn = {0801854148},␍␊ ␉publisher = {Johns Hopkins University Press},␍␊ ␉title = {Matrix computations (3rd ed.)},␍␊ ␉url = {http://portal.acm.org/citation.cfm?id=248979},␍␊ ␉year = {1996}␍␊ }␍␊ ␍␊ ␍␊ @techreport{ProgrammingC,␍␊ title = {Programming languages ? C, ISO/IEC 9899:TC3},␍␊ author = {ISO/IEC},␍␊ year = {2007}, ␍␊ note = {\url{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf}}␍␊ }␍␊ ␍␊ ␍␊ @UNPUBLISHED{KahanMarketing2000,␍␊ author = {William Kahan},␍␊ title = {Marketing versus Mathematics},␍␊ year = {2000}, ␍␊ note = {\url{www.cs.berkeley.edu/~wkahan/MktgMath.ps}}␍␊ }␍␊ ␍␊ ␍␊ ␍␊ @UNPUBLISHED{Li2000,␍␊ author = {X. S. Li and J. W. Demmel and D. H. Bailey and G. Henry and Y. Hida and J. Iskandar and␍␊ W. Kahan and A. Kapur and M. C. Martin and T. Tung and D. J. Yoo},␍␊ title = {Design, Implementation and Testing of Extended and Mixed Precision BLAS},␍␊ year = {2000}, ␍␊ note = {\url{www.netlib.org/lapack/lawnspdf/lawn149.pdf}}␍␊ }␍␊ ␍␊ % Copyright (C) 2008-2010 - Consortium Scilab - Digiteo - Michael Baudin␊ %␊ % This file must be used under the terms of the ␊ % Creative Commons Attribution-ShareAlike 3.0 Unported License :␊ % http://creativecommons.org/licenses/by-sa/3.0/␊ ␊ ␊ @book{AbramowitzStegun1972,␊ author = {Abramowitz, M. and Stegun, I. A.},␊ title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables},␊ year = {1972},␊ publisher= {}}␊ ␊ @UNPUBLISHED{wikipediaquadratic,␊ title = {Quadratic Equation},␊ note = {\url{http://en.wikipedia.org/wiki/Quadratic_equation}}␊ }␊ ␊ ␊ @UNPUBLISHED{wikipedialossofsign,␊ title = {Loss of significance},␊ note = {\url{http://en.wikipedia.org/wiki/Loss_of_significance}}␊ }␊ ␊ @UNPUBLISHED{mathworldquadratic,␊ title = {Quadratic Equation},␊ note = {\url{http://mathworld.wolfram.com/QuadraticEquation.html}}␊ }␊ ␊ @book{NumericalRecipes,␊ author = {W. H. Press and Saul A. Teukolsky and William T. Vetterling and Brian P. Flannery},␊ title = {Numerical Recipes in C, Second Edition},␊ year = {1992},␊ publisher= {}}␊ ␊ @book{WhatEveryComputerScientist,␊ author = {David Goldberg},␊ title = {What Every Computer Scientist Should Know About Floating-Point Arithmetic},␊ month={March},␊ year = {1991},␊ publisher= {Association for Computing Machinery, Inc.},␊ note = {\url{http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf}},␊ }␊ ␊ @article{Nievergelt2003,␊ jstor_articletype = {primary_article},␊ title = {How (Not) to Solve Quadratic Equations},␊ author = {Nievergelt, Yves},␊ journal = {The College Mathematics Journal},␊ jstor_issuetitle = {},␊ volume = {34},␊ number = {2},␊ jstor_formatteddate = {Mar., 2003},␊ pages = {90--104},␊ url = {http://www.jstor.org/stable/3595780},␊ ISSN = {07468342},␊ abstract = {},␊ publisher = {Mathematical Association of America},␊ language = {},␊ year = {2003},␊ }␊ ␊ ␊ @article{Kahan2004,␊ title = {On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic},␊ author = {W. Kahan},␊ note = {\url{http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf}},␊ year = {2004},␊ }␊ ␊ @article{Smith1962,␊ author = {Smith,, Robert L.},␊ title = {Algorithm 116: Complex division},␊ journal = {Commun. ACM},␊ volume = {5},␊ number = {8},␊ year = {1962},␊ issn = {0001-0782},␊ pages = {435},␊ doi = {http://doi.acm.org/10.1145/368637.368661},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ ␊ @article{Jenkins1975,␊ author = {Jenkins,, M. A.},␊ title = {Algorithm 493: Zeros of a Real Polynomial [C2]},␊ journal = {ACM Trans. Math. Softw.},␊ volume = {1},␊ number = {2},␊ year = {1975},␊ issn = {0098-3500},␊ pages = {178--189},␊ doi = {http://doi.acm.org/10.1145/355637.355643},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ ␊ @article{214414,␊ author = {Stewart,, G. W.},␊ title = {A note on complex division},␊ journal = {ACM Trans. Math. Softw.},␊ volume = {11},␊ number = {3},␊ year = {1985},␊ issn = {0098-3500},␊ pages = {238--241},␊ doi = {http://doi.acm.org/10.1145/214408.214414},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ @article{567808,␊ author = {Li,, Xiaoye S. and Demmel,, James W. and Bailey,, David H. and Henry,, Greg and Hida,, Yozo and Iskandar,, Jimmy and Kahan,, William and Kang,, Suh Y. and Kapur,, Anil and Martin,, Michael C. and Thompson,, Brandon J. and Tung,, Teresa and Yoo,, Daniel J.},␊ title = {Design, implementation and testing of extended and mixed precision BLAS},␊ journal = {ACM Trans. Math. Softw.},␊ volume = {28},␊ number = {2},␊ year = {2002},␊ issn = {0098-3500},␊ pages = {152--205},␊ doi = {http://doi.acm.org/10.1145/567806.567808},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ @article{KAHAN1987,␊ author = {KAHAN, W.},␊ title = {Branch cuts for complex elementary functions, or much ado about nothing's sign bit.},␊ year = {1987},␊ pages = {165--211},␊ publisher = {In The State of the Art m Numerzcal Analysts. Proceedings of the Joint IMA/SIAM Conference, A. Iserles and M J. D Powell, Eds. Clarendon Press, Oxford, England},␊ }␊ @article{1039814,␊ author = {Priest,, Douglas M.},␊ title = {Efficient scaling for complex division},␊ journal = {ACM Trans. Math. Softw.},␊ volume = {30},␊ number = {4},␊ year = {2004},␊ issn = {0098-3500},␊ pages = {389--401},␊ doi = {http://doi.acm.org/10.1145/1039813.1039814},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ @UNPUBLISHED{schimdtnd,␊ title = {Numerical Derivatives},␊ note = {\url{http://fermi.la.asu.edu/PHY531/intro/node1.html}},␊ author = {K.E. Schmidt}␊ }␊ @book{dixmier,␊ author = {J. Dixmier, P. Dugac},␊ year = {1969},␊ publisher= {Gauthier-Villars}}␊ ␊ @article{Forsythe1966,␊ author = {George E. Forsythe},␊ title = {How Do You Solve A Quadratic Equation ?},␊ year = {1966},␊ publisher = {Technical Report No. CS40},␊ note = {\url{ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/66/40/CS-TR-66-40.pdf}},␊ }␊ ␊ ␊ @ARTICLE{1667289,␊ title={Underflow and the Denormalized Numbers},␊ author={Coonen, J.T.},␊ journal={Computer},␊ year={1981},␊ month={March },␊ volume={14},␊ number={3},␊ pages={75-87},␊ doi={10.1109/C-M.1981.220382},␊ ISSN={0018-9162}, }␊ ␊ @book{artcomputerKnuthVol2,␊ author = {D. E. Knuth},␊ title = {The Art of Computer Programming, Volume 2, Seminumerical Algorithms},␊ year = {1998},␊ publisher= {Third Edition, Addison Wesley, Reading, MA}}␊ ␊ @Article{Wynn:1962:AAP,␊ author = "P. Wynn",␊ title = "An Arsenal of {ALGOL} Procedures for Complex Arithmetic",␊ journal = "BIT Numerical Mathematics",␊ volume = "2",␊ number = "4",␊ pages = "232--255",␊ month = dec,␊ year = "1962",␊ CODEN = "BITTEL, NBITAB",␊ DOI = "http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/BF01940171",␊ ISSN = "0006-3835 (print), 1572-9125 (electronic)",␊ bibdate = "Wed Jan 4 18:52:07 MST 2006",␊ bibsource = "ftp://ftp.math.utah.edu/pub/tex/bib/bit.bib;␊ http://springerlink.metapress.com/openurl.asp?genre=issue&issn=0006-3835&volume=2&issue=4",␊ URL = "http://www.springerlink.com/openurl.asp?genre=article&issn=0006-3835&volume=2&issue=4&spage=232",␊ acknowledgement = ack-nhfb,␊ }␊ @article{DBLP:journals/cacm/Friedland67,␊ author = {Paul Friedland},␊ title = {Algorithm 312: Absolute value and square root of a complex␊ number},␊ journal = {Commun. ACM},␊ volume = {10},␊ number = {10},␊ year = {1967},␊ pages = {665},␊ ee = {http://doi.acm.org/10.1145/363717.363780},␊ bibsource = {DBLP, http://dblp.uni-trier.de}␊ }␊ ␊ @article{journals/ibmrd/MolerM83,␊ title = {Replacing Square Roots by Pythagorean Sums.},␊ author = {Cleve B. Moler and Donald Morrison},␊ journal = {IBM Journal of Research and Development},␊ number = {6},␊ pages = {577-581},␊ url = {http://dblp.uni-trier.de/db/journals/ibmrd/ibmrd27.html#MolerM83},␊ volume = {27},␊ year = {1983},␊ description = {dblp},␊ date = {2002-01-03},␊ keywords = {dblp }␊ } ␊ ␊ @techreport{900236,␊ author = {Lawson,, C. L. and Hanson,, R. J. and Kincaid,, D. R. and Krogh,, F. T.},␊ title = {Basic Linear Algebra Subprograms for FORTRAN Usage},␊ year = {1977},␊ source = {http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%3Autexas_cs%3AUTEXAS_CS%2F%2FCS-TR-77-72},␊ publisher = {University of Texas at Austin},␊ address = {Austin, TX, USA},␊ }␊ ␊ @article{355771,␊ author = {Blue,, James L.},␊ title = {A Portable Fortran Program to Find the Euclidean Norm of a Vector},␊ journal = {ACM Trans. Math. Softw.},␊ volume = {4},␊ number = {1},␊ year = {1978},␊ issn = {0098-3500},␊ pages = {15--23},␊ doi = {http://doi.acm.org/10.1145/355769.355771},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ @InCollection{Cody:1971:SEF,␊ author = "W. J. Cody",␊ title = "Software for the Elementary Functions",␊ crossref = "Rice:1971:MS",␊ pages = "171--186",␊ year = "1971",␊ bibdate = "Thu Sep 15 18:56:47 1994",␊ bibsource = "garbo.uwasa.fi:/pc/doc-soft/fpbiblio.txt",␊ acknowledgement = ack-nj,␊ }␊ ␊ @techreport{ieee754-1985,␊ ␉author = {Stevenson, David },␊ ␉booktitle = {ANSI/IEEE Std 754-1985},␊ ␉citeulike-article-id = {1677576},␊ ␉journal = {ANSI/IEEE Std 754-1985},␊ ␉keywords = {floating-point, para08},␊ ␉month = {August},␊ ␉posted-at = {2008-04-21 12:47:40},␊ ␉priority = {1},␊ ␉title = {IEEE standard for binary floating-point arithmetic},␊ ␉url = {http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=30711},␊ ␉year = {1985}␊ }␊ ␊ @Book{P754:2008:ISF,␊ author = "{IEEE Task P754}",␊ title = "{IEEE 754-2008, Standard for Floating-Point␊ Arithmetic}",␊ publisher = pub-IEEE-STD,␊ address = pub-IEEE-STD:adr,␊ pages = "58",␊ day = "29",␊ month = aug,␊ year = "2008",␊ DOI = "http://doi.ieeecomputersociety.org/10.1109/IEEESTD.2008.4610935",␊ ISBN = "0-7381-5753-8 (paper), 0-7381-5752-X (electronic)",␊ ISBN-13 = "978-0-7381-5753-5 (paper), 978-0-7381-5752-8␊ (electronic)",␊ bibdate = "Thu Sep 25 09:50:30 2008",␊ URL = "http://ieeexplore.ieee.org/servlet/opac?punumber=4610933;␊ http://en.wikipedia.org/wiki/IEEE_754-2008",␊ abstract = "This standard specifies interchange and arithmetic␊ formats and methods for binary and decimal␊ floating-point arithmetic in computer programming␊ environments. This standard specifies exception␊ conditions and their default handling. An␊ implementation of a floating-point system conforming to␊ this standard may be realized entirely in software,␊ entirely in hardware, or in any combination of software␊ and hardware. For operations specified in the normative␊ part of this standard, numerical results and exceptions␊ are uniquely determined by the values of the input␊ data, sequence of operations, and destination formats,␊ all under user control.",␊ acknowledgement = ack-nhfb,␊ }␊ ␊ @article{matlab-hypot,␊ note={\url{http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/hypot.html&http://www.google.fr/search?q=hypot&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:fr:official&client=firefox-a}},␊ title={Matlab - hypot : square root of sum of squares},␊ }␊ ␊ @article{fdlibm,␊ title = {A Freely Distributable C Math Library},␊ author = {Sun Microsystems, Inc.},␊ year = {1993},␊ note = {\url{http://www.netlib.org/fdlibm}},␊ }␊ ␊ @book{261217,␊ author = {Muller,, Jean-Michel},␊ title = {Elementary functions: algorithms and implementation},␊ year = {1997},␊ isbn = {0-8176-3990-X},␊ publisher = {Birkhauser Boston, Inc.},␊ address = {Secaucus, NJ, USA},␊ }␊ ␊ @UNPUBLISHED{WWWMapleSoft,␊ title = {MapleSoft},␊ author = {Maple},␊ note = {\url{http://www.maplesoft.com}}␊ }␊ ␊ @UNPUBLISHED{WWWMathematica,␊ title = {Mathematica},␊ author = {Wolfram Research},␊ note = {\url{http://www.wolfram.com/products/mathematica}}␊ }␊ ␊ @UNPUBLISHED{WWWWolframAlpha,␊ title = {Wolfram Alpha},␊ author = {Wolfram Research},␊ note = {\url{http://www.wolframalpha.com}}␊ }␊ ␊ @UNPUBLISHED{WWWMaxima,␊ title = {Maxima},␊ note = {\url{http://maxima.sourceforge.net/}}␊ }␊ ␊ @UNPUBLISHED{WWWScilab,␊ title = {Scilab},␊ author = {The Scilab Consortium},␊ note = {\url{http://www.scilab.org}}␊ }␊ ␊ @UNPUBLISHED{WWWMatlab,␊ title = {Matlab},␊ author = {The MathWorks},␊ note = {\url{http://www.mathworks.fr}}␊ }␊ ␊ @UNPUBLISHED{WWWOctave,␊ title = {Octave},␊ note = {\url{http://www.gnu.org/software/octave}}␊ }␊ ␊ @Book{Higham:2002:ASN,␊ author = "Nicholas J. Higham",␊ title = "Accuracy and Stability of Numerical Algorithms",␊ publisher = "Society for Industrial and Applied Mathematics",␊ address = "Philadelphia, PA, USA",␊ edition = "Second",␊ year = "2002",␊ pages = "xxx+680",␊ ISBN = "0-89871-521-0"␊ }␊ @article{JenkinsTraub1970,␊ jstor_articletype = {primary_article},␊ title = {A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration},␊ author = {Jenkins, M. A. and Traub, J. F.},␊ journal = {SIAM Journal on Numerical Analysis},␊ jstor_issuetitle = {},␊ volume = {7},␊ number = {4},␊ jstor_formatteddate = {Dec., 1970},␊ pages = {545--566},␊ url = {http://www.jstor.org/stable/2949376},␊ ISSN = {00361429},␊ abstract = {},␊ language = {},␊ year = {1970},␊ publisher = {Society for Industrial and Applied Mathematics}, ␊ copyright = {Copyright © 1970 Society for Industrial and Applied Mathematics},␊ }␊ ␊ @book{KelleyNewtonMethod,␊ author = {Kelley, C. T.},␊ title = {Solving nonlinear equations with Newton's method},␊ year = {2003},␊ publisher= {SIAM}}␊ ␊ @article{DumontetVignes1977,␊ title = {D\'etermination du pas optimal dans le calcul des d\'eriv\'ees sur ordinateur},␊ author = {Dumontet, J. and Vignes, J.},␊ journal = {R.A.I.R.O Analyse num\'erique},␊ volume = {11},␊ number = {1},␊ pages = {13--25},␊ url = {http://www.numdam.org/item?id=M2AN_1977__11_1_13_0},␊ year = {1977},␊ }␊ ␊ @article{1979SteplemanWinarsky,␊ jstor_articletype = {primary_article},␊ title = {Adaptive Numerical Differentiation},␊ author = {Stepleman, R. S. and Winarsky, N. D.},␊ journal = {Mathematics of Computation},␊ jstor_issuetitle = {},␊ volume = {33},␊ number = {148},␊ jstor_formatteddate = {Oct., 1979},␊ pages = {1257--1264},␊ url = {http://www.jstor.org/stable/2006459},␊ ISSN = {00255718},␊ abstract = {It is well known that the calculation of an accurate approximate derivative $f'(x)$ of a nontabular function $f(x)$ on a finite-precision computer by the formula $d(h) = (f(x + h) - f(x - h))/2h$ is a delicate task. If $h$ is too large, truncation errors cause poor answers, while if $h$ is too small, cancellation and other "rounding" errors cause poor answers. We will show that by using simple results on the nature of the asymptotic convergence of $d(h)$ to $f'$, a reliable numerical method can be obtained which can yield efficiently the theoretical maximum number of accurate digits for the given machine precision.},␊ language = {},␊ year = {1979},␊ publisher = {American Mathematical Society}, ␊ copyright = {Copyright © 1979 American Mathematical Society},␊ }␊ ␊ @book{Gill81MurrayWright,␊ ␉address = {London},␊ ␉author = {Gill, P. E. and Murray, W. and Wright, M. H. },␊ ␉citeulike-article-id = {1055426},␊ ␉keywords = {bibtex-import},␊ ␉posted-at = {2007-01-20 09:02:15},␊ ␉priority = {2},␊ ␉publisher = {Academic Press},␊ ␉title = {Practical optimization},␊ ␉year = {1981}␊ }␊ ␊ @Book{MullerEtAl2010,␊ title = {Handbook of Floating-Point Arithmetic},␊ author = {Muller, Jean-Michel and Brisebarre, Nicolas and de␊ Dinechin, Florent and Jeannerod, Claude-Pierre and␊ Lef{\e}vre, Vincent and Melquiond, Guillaume and Revol,␊ Nathalie and Stehl{\'e}, Damien and Torres, Serge},␊ publisher = {{B}irkh\"auser {B}oston },␊ pages = {572 },␊ note = {{ACM} {G}.1.0; {G}.1.2; {G}.4; {B}.2.0; {B}.2.4; {F}.2.1.,␊ ISBN 978-0-8176-4704-9},␊ year = {2010},␊ }␊ ␊ @article{Monniaux2008,␊ author = {Monniaux, David},␊ title = {The pitfalls of verifying floating-point computations},␊ journal = {ACM Trans. Program. Lang. Syst.},␊ volume = {30},␊ number = {3},␊ year = {2008},␊ issn = {0164-0925},␊ pages = {1--41},␊ doi = {http://doi.acm.org/10.1145/1353445.1353446},␊ publisher = {ACM},␊ address = {New York, NY, USA},␊ }␊ ␊ @techreport{CordenKreitzerIntel2009,␊ title = {Consistency of Floating-Point Results using the Intel Compiler or Why doesn't my application always give the same answer?},␊ author = {Corden, Martyn J. and Kreitzer, David},␊ institution = {Intel Corporation, Software Solutions Group}, ␊ year = {2009}␊ }␊ ␊ @techreport{GCCManual2008,␊ title = {The GNU Compiler Collection},␊ author = {Free Software Foundation},␊ year = {2008}␊ }␊ ␊ @UNPUBLISHED{Intel64IA32Architecture,␊ title = {Intel 64 and IA-32 Architectures Software Developer's Manual. Volume 1: Basic Architecture},␊ author = {Intel Corporation}, ␊ year = {2009},␊ note = {\url{http://www.intel.com/products/processor/manuals}}␊ }␊ ␊ @UNPUBLISHED{MPFRWeb,␊ author = {MPFR},␊ title = {The MPFR Library},␊ note = {\url{http://www.mpfr.org}}␊ }␊ ␊ @Article{Fousse:2007:MMP,␊ author = "Laurent Fousse and Guillaume Hanrot and Vincent Lef\evre and Patrick ␊ P\'elissier and Paul Zimmermann",␊ title = "{MPFR}: A Multiple-Precision Binary Floating-Point Library with Correct Rounding",␊ journal = "{ACM} Transactions on Mathematical Software",␊ volume = "33",␊ number = "2",␊ month = jun,␊ year = "2007",␊ pages = "13:1--13:15",␊ URL = "http://doi.acm.org/10.1145/1236463.1236468",␊ abstract = "This paper presents a multiple-precision binary floating-point library,␊ written in the ISO C language, and based on the GNU MP library. Its ␊ particularity is to extend to arbitrary-precision ideas from the IEEE 754 ␊ standard, by providing \emph{correct rounding} and \emph{exceptions}.␊ We demonstrate how these strong semantics are achieved --- with no ␊ significant slowdown with respect to other arbitrary-precision tools␊ --- and discuss a few applications where such a library can be useful.",␊ }␊ ␊ @UNPUBLISHED{GMPWeb,␊ author = {GMP},␊ title = {GNU Multiple Precision Arithmetic Library},␊ note = {\url{http://gmplib.org}}␊ }␊ ␊ ␊ @book{GolubVanLoad1996,␊ ␉address = {Baltimore, MD, USA},␊ ␉author = {Golub, Gene H. and Van Loan, Charles F. },␊ ␉isbn = {0801854148},␊ ␉publisher = {Johns Hopkins University Press},␊ ␉title = {Matrix computations (3rd ed.)},␊ ␉url = {http://portal.acm.org/citation.cfm?id=248979},␊ ␉year = {1996}␊ }␊ ␊ ␊ @techreport{ProgrammingC,␊ title = {Programming languages ? C, ISO/IEC 9899:TC3},␊ author = {ISO/IEC},␊ year = {2007}, ␊ note = {\url{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf}}␊ }␊ ␊ ␊ @UNPUBLISHED{KahanMarketing2000,␊ author = {William Kahan},␊ title = {Marketing versus Mathematics},␊ year = {2000}, ␊ note = {\url{www.cs.berkeley.edu/~wkahan/MktgMath.ps}}␊ }␊ ␊ ␊ ␊ @UNPUBLISHED{Li2000,␊ author = {X. S. Li and J. W. Demmel and D. H. Bailey and G. Henry and Y. Hida and J. Iskandar and␊ W. Kahan and A. Kapur and M. C. Martin and T. Tung and D. J. Yoo},␊ title = {Design, Implementation and Testing of Extended and Mixed Precision BLAS},␊ year = {2000}, ␊ note = {\url{www.netlib.org/lapack/lawnspdf/lawn149.pdf}}␊ }␊ ␊ @Article{Stewart:1986:CNC,␊ author = "G. W. Stewart",␊ title = "Corrigendum: {A} Note on Complex Division''",␊ journal = j-TOMS,␊ volume = "12",␊ number = "3",␊ pages = "285--285",␊ month = sep,␊ year = "1986",␊ CODEN = "ACMSCU",␊ ISSN = "0098-3500",␊ bibdate = "Fri Sep 30 01:17:25 1994",␊ note = "See \cite{Stewart:1985:NCD}.",␊ acknowledgement = ack-nhfb,␊ }␊ ␊

Revision: 32